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It would appear from the foregoing that the same is also true 
for annuli. 

velocity distribution in smooth pipes. Z. Anger. Mak 
Mech. 31, 308 (1951). 

From this work it is apparent that the mixing length 3. 
constant is not in fact a universal constant for all surfaces. 
as postulated by some workers, but is in fact a function of 
the radius or curvature ratio of the annulus to which it 
applies. 4. 

The method contained herein appears to give a simple. 
but reliable, prediction of the form of the u+ - yi relation- 
ship for the inner region of annuli. 

5. 
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NOMENCLATURE 

= 2s, equivalent diameter of the channel; 
function ; 
convective heat-transfer coefficient; 
Nusselt number (based on equivalent diameter); 
Reynolds number (based on equivalent diameter) ; 
width of the channel ; 
temperature ; 
velocity; 
heat flux : 
distance in the direction of flow: 
distance from a wall 

Greek symbols 
a, dimensionless temperature as defined in equations 

(11) and (12); 
)‘. = (q;!q,), ratio of the heat fluxes at the walls of the 

channel ; 
6. total conductivity of heat. 

* Department of Mechanical Engineering, The University 
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t Engineering Laboratory, University of Cambridge. 

Subscripts 
PS. value in symmetrical heating case; 
P, Q. refer to the walls of the channel: 
W, wall value ; 
B. bulk value. 

Superscripts 
! I, 11, 1, . refer to the thermal boundary conditions des- 

cribed in Fig. 1. 

INTRODUCTION 

A NUMBER of analytical studies [l-5] have been made of 
heat-transfer coefficients in flow between parallel plates with 
unequal heat fluxes at the two plates. An experiment has 
been reported by Barrow [4], but the results showed con- 
siderable scatter and its was difficult to confirm that the 
analysis given by Barrow in the same paper adequately 
described the variation in the heat-transfer coefficient (at 
one wall) with the ratio of the fluxes at the two walls, y. 

In most of the previous work, an analytical solution is 
first obtained for flow between the plates with heat transfer 
at one wall and the other wall insulated. Assumptions for the 
variations of the velocity and eddy diffusivity of heat across 
the channel are made. The case of asymmetric heat transfer 



at both walls is dealt with by adding together the solutions /Adiobotic wall, 0 

for the temperature when heat is transferred at each wall in 
turn with the other wall insulated. The resulting heat- 
transfer coefficients at the two walls are shown to be func- 
tions of the heat flux ratio, y. i.e. the ratio of the heat transfer 
at one wall to the heat transfer at the other wall. 

This method of superposition proposed by Seban [l] 
Stein [2] and Hatton and Quarmby [5] is briefly reviewed 
here, but no assumptions for the velocity and eddy diffusivity -*- I 
distributions are made. The new point established is that for (o)Asymmetric heating- odiobotic wall, case I 
fully developed flow, a simple relation for the variation of 
heat-transfer coefficient (at either wall) with heat flux ratio 
may be derived if the heat-transfer coefficients for the insu- 

0 

lated wall case and for the case of equal and opposite heat 
fluxes are known, independent of the detailed assumptions 
concerning the velocity and eddy diffusivity distributions. 
This result also follows from Hatton and Quarmby’s work 
[5] [equation (24) and (25) of their paper] if fully developed 
flow is considered. -x- 

A favourable comparison is made between heat-transfer 
odiobotic wall, P 

coefficients predicted from this superposition analysis. and (b) Asymmetric heating- odiobotic wall, case2 

experimental data reported by Barrow [4]. 
I 

ANALYSIS 

Consider lirst the heat transfer from one wall P to a 
turbulent flow between plates P and Q as shown in Fig l(a). 
The wall Q is insulated. The heat flux per unit area at the 
wall P is 4; and is invariant with x. the distance along the 
channel. Wall temperatures are TIP and To and the bulk mean -x- I 
temperature of the fluid is Tb. 

The heat-transfer coefficient is, by definition 

/I; = q:/(T; - Tb) 

and the temperature distribution across the channel may be 
expressed non-dimensionally as 

(c) General case of asymmetric heating 

FIG. 1. Temperature distributions in asymmetric heating. 
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T' - Th 
~ = f’(Y). T; - Th 

is the same in the two cases, i.e. t’ = c” = c(y). The velocity 
distribution will also be the same. i.e. u’ = u” = u(y). The 

(2) energy equation is linear in each case. the simplified forms 

Consider next the case when the wall Q is heated and the 
of the equations being 

wall P is insulated Fig. l(b). The heat transfer at the wall Q dT a a7-1 
is now ~1 = yqk, and is invariant with x, so that y is constant. x=ay Cay ( > 
The heat-transfer coefficient is 

and 

(3) aT” a a7-c' 
u-c- e_ 

where TG and Ti are respectively the heated wall tempera- ( > ax ay ay 

ture and the bulk mean temperature, and the temperature and the temperature functions are identical, i.e. f’ = f”. 
distribution may be expressed as The energy equations may be added to give 

w = f”(S - y) (4) 
Q P 

where s is the width of the channel. This equation then describes the flow when there is heat 
It is now assumed that the distribution of the total transfer from both walls simultaneously as illustrated in 

conductivity of heat 6 is symmetrical across the channel and Fig. l(c). The local temperature distribution for the general 
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case is given by 

T”’ = T’ + T” = f(y)(TI, - Th) 

+ f(S - y)(T;; - T;) + Th + T; 

or. 

(8) 

T”’ - T6’ _ f(y) + y [f(s - y) - l] --- 
Tf’ - T;; 1-Y 

(9) 

where 

and 

T; = T; + T;, T; = Th + T; 

Thus the temperature distribution with unequal heat 

transfer at the two wails may be described in terms of the 

complete solution of the adiabatic wall case. f(y), and the 

ratio of the heat fluxes. Y. The heat-transfer coefficient at the 

wall P is 

I 
Tz (10) 

But, h; = h;; and q; = hb(TG - Ti),Y from 

so that. 

hf’ 1 T" - T" 
l+Y+Y $+ 

[ 1 Q B 

1 

= 1 + y(1 - a) 

where. 

Similarly, 

a= 

h; 1 
-= 
hZ 1 + (I - a):Y 

equation (3) 

(II) 

(12) 

where 

EXPERIMENTAL INTJ3RPRETATION 

It follows from the analysis that if the heat transfer 

coefficients for the adiabatic wall case (y = 0) and for sym- 

metrical heating (Y = I) are known. then the heat-transfer 

coefficient for any other value of y may be determined. It 
should be noted, after Seban (1). that the heat-transfer co- 

efficient changes with y because of the change in the bulk 

mean temperature- the non-dimensional temperature 

gradient at one wall, viz. [df’(y)/ay],+ is unchanged by the 

heating at the other wall. 

Considering the wall P. it follows from equation (11) that 

ify=O 

as required by the definition of h;. 

If y = 1. the case uf symmetrical heating, then from equa- 
tion (11). 

h 1 
ps=_ 
hip 2-a 

(13) 

where h, is the heat-transfer coefficient at the wall P in 

symmetrical heating. From equations (11) and (13) 

h;’ Nu;’ 1 

h;- - Nu; 1 - y( 1 - h;/h& 
(14) 

Similarly. for the wall Q 

h;;’ _ Nu; I 
_-= 

h; Nu;; 1 + &‘h,, - 1)~ 
(15) 

It should be noted here that equations [14] and [ 151 are 

compatible with the results of Hatton and Quarmby’s 
analysis. i.e. their equations [24] and [25] for large axial 

distance. 

Barrow [4] has carried out an experiment in which the 

heat-transfer coeflicient hk. and hy for various negative 

values of Y. were measured. In his parallel walled duct. the 

most reliable results were obtained in the central region 

37.5 < x/D, < 75 where D,( = 2s) is the equivalent diameter 

of the duct. Measurements of the heat-transfer coefficient in 

symmetrical heating were not made and so hy was related 

to h;. 

In a series of adiabatic wall experiments which were 

conducted over a range of Reynolds number (1100&26000) 

it was found that at x/D, * 50 the Nusselt numbers were on 

the average 0.888 that value for symmetrical heating i..e. 

(hi/h,,) = 0.888. For symmetrical heating Nu, was evalu- 

ated from a theoretical result which agreed favourably with 

Nu = 0.02 I?@‘* where Re is the Reynolds number based on 

the equivalent diameter D,. According to equation (11) 

therefore, 

g= [Irk] (16) 

This relation is shown in Fig. 2 together with the experi- 

mental data for asymmetrical heating obtained by Barrow 

[4] at the same axial location. 



OExpaimental 

doto. BorrOW [41 
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equation (16) 

From an experimental point of view it may be difficult to 
obtain temperature distributions. Nevertheless. if heat- 
transfer coefficients for the cases of one adiabatic wall and 
symmetrical heating are obtained experimentally, then the 
heat-transfer coefficients at the two walls, in the general 
asymmetric case, are easily obtained from equations (11) 
and (12). 

Fair confirmation of these relations is obtained from 
experimental data already published by Barrow [4]. 

I. 

2. 

FIG. 2. Dependence of heat-transfer coefficient on asym- 
metry of heat transfer. 3. 

CONCLUSIONS 4. 

Following Seban [l] and Stein [2]. it is shown that if the 
temperature distribution across a channel, heated at one 
wall and insulated at the other. is completely determined 5 
(experimentally or analytically) then the temperature distri- 
bution in a more general asymmetric case, of unequal 
heating at the two walls, may be derived. 
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